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Abstract

Plant phenotyping is the task of measuring plant at-

tributes. We term ‘length phenotyping’ the task of measur-

ing the length of a part of interest of a plant. The recent rise

of low cost RGB-D sensors, and accurate deep networks,

provides new opportunities for length phenotyping. In this

paper we present a general technique for measuring length,

based on three stages: object detection, point of interest

identification, and a 3D measurement phase. We address

object detection and interest point identification by training

network models for each task, and use robust de-projection

for the 3D measurement stage. We apply our method to two

real world tasks: measuring the height of a banana tree,

and measuring the length, width, and aspect ratio of ba-

nana leaves in potted plants. Our results indicate satisfac-

tory measurement accuracy, with less than 10% deviation

in all measurements. The two tasks were solved using the

same pipeline with minor adaptations, indicating the gen-

eral potential of the method.

1. Introduction

In plant phenotyping one measures and assesses com-

plex plant traits related to growth, yield, and other signifi-

cant agricultural properties [5]. As manual phenotyping is

extremely costly, there is a need to develop automated anal-

ysis algorithms that are accurate and robust, which are able

to measure phenotypic traits in field conditions on real crops

[21]. Automated algorithms are required for accelerating

cycles of genetic engineering [29], and for automating agri-

culture processes [5]. Field and greenhouse phenotyping

is a difficult challenge, as field conditions are notoriously

heterogeneous, and the inability to control environmental

factors, such as illumination and occlusion, makes results

difficult to interpret [2]. Image analysis algorithms are cru-

cial for advancing large scale and accurate plant phenotyp-

ing [18]. A second recent advancement is the abundance of

low-cost sensors, from RGB to depth and thermal sensors,

useful for capturing plant traits. For example, depth sensors

Figure 1. Length based phenotyping. Left: A banana tree with

two interest points: basal (red) and upper (blue). The distance be-

tween them is the tree height. Right: A banana leaf with 4 interest

points: basal (red), apex (blue), left (purple) and right (yellow).

Only measurable objects are annotated.The line between the two

former points is the leaf center line, and its length is the leaf length.

The distance between the latter points is the width. Note that the

position of the latter points (left and right) is somewhat ambiguous

in the direction of the leaf center line.

can capture the plant shape in three dimensions, containing

useful information about its developmental stage[24].

This paper focuses on the problem of measuring 3D

physical lengths of plant parts in field conditions, using a

low cost RGBD sensor and a deep network architecture.

Measuring the size of plant’s parts can provide important

cues about the plant state[32] and expected utility. For ex-

ample, measuring the aspect ratio (the ratio between the

length and the width) of young banana leaves in a pot-

ted plant prior to planting in the plantation, can determine

whether the plant has undergone a mutation that results in

undesirable fruits. Specifically, such mutations are charac-

terized by a ratio smaller than 1.8, while normal plant typi-

cally have a ratio approaching 2.2 [8]. Another example is

estimating the height of a banana tree. It is important since

one goal of variety developers is to lower the banana tree

height, enabling easier tree treatment for farmers. An exam-

ple from a different crop is cucumber length measurement.

The histogram of cucumber fruit lengths in a given plot

provides strong indication regarding the cucumber growth



rate and expected quality [14]. We term such tasks ‘length

phenotyping’. Given the abundance and repetitive nature of

length phenotyping tasks, it is desirable to develop a generic

process that can be applied, with minimal adjustments to

measuring lengths of different plant parts in various plants.

We focus here on two problems related to banana crops,

considered to be the most widely consumed fruit [12]. First,

we estimate the height of a banana tree (actually, a banana

plant is not a tree, but we use the term tree here for sim-

plicity). This height is determined by measuring the dis-

tance between the tree’s basal point, and tree’s upper inter-

est point, defined by experts as the highest point of the tree’s

peduncle (top of the arch). These points can be seen in Fig-

ure 1 on the left. Second, we estimate the length, width,

and aspect ratio of banana leaves. The leaf length is defined

as the distance between the leaf’s apex and the leaf’s con-

nection point with the petiole. The width is the length of the

longest line perpendicular to the leaf center line, connecting

the two most distant points on the left and right side of the

leaf, as can be seen in Figure 1 on the right. The left and

right key points are defined with respect to the vector ori-

ented from the leaf basal point to the apex point. While we

specifically focus on these two problems, we believe that

the algorithmic pipeline we propose is sufficiently general

for length measurement tasks, as its components are for the

most part not tailored to the specific problems addressed.

Our proposed algorithmic pipeline consists of three

stages: (1) detecting the objects of interest, (2) identifying

interest points on the detected objects, and (3) de-projection

of the interest points to world coordinates to compute dis-

tances. We use separate stages of detection and interest

point identification rather than a direct identification of the

interest points due to two main reasons. First, the inter-

est points are often not visually distinctive on their own,

i.e. they do not have a sufficiently unique appearance which

will enable their detection without the object context. For

example, the left and right interest points of a leaf are only

locally characterized by a curved edge, a structure which is

abundant in many irrelevant plant parts in the image. Direct

detection of such points would hence lead to a proliferation

of false positives. Once the leaf is detected, these points can

be identified in well defined locations with respect to the

leaf, enabling robust finding and accurate localization. A

second reason is the need for correspondence determination

between pairs of points (and in the leaf case, quadruplets)

of the same object, rather than points in different objects,

for computing distances between corresponding points.

For the first two stages we use Convolutional Neural Net-

works (CNNs) trained and applied on RGB images. As

object detection in RGB images is well studied [31], we

use task transfer from well trained RGB backbones. In

the third stage, to perform 3D measurements, we use an

RGB-D sensor, providing a depth channel in addition to

the RGB measurements. Depth information enables infer-

ence of the world coordinates for given image points, using

de-projection algorithms [7]. Specifically, we use an Intel

D435 (Intel Corporation, Santa Clara, CA, USA) sensor for

image acquisition. This camera is based on infra-red active

stereoscopy technology, where the target is observed from

two different viewpoints and a triangulation method is used

to estimate the depth. It has a global shutter sensor, enabling

good performance in highly dynamic conditions that exist in

fields [7]. It was shown that the Intel D435 sensor perform

well in outdoor conditions for phenotyping tasks [28].

For object detection we use a two-staged detector, based

on the Faster R-CNN and Mask R-CNN [26, 10] architec-

tures. The first stage in the detector is a Region Proposal

Network (RPN), whose goal is to provide image regions

which are good candidates for containing objects of inter-

est. The second stage network classifies the object type (or

reject it) and refines its bounding box. For the interest point

identification architecture we use the interest point subnet

proposed in Mask-RCNN [10], with modified loss to cope

with the higher difficulty in our specific problems. For the

last stage, we develop robust de-projection to cope with the

challenging environment, and depth camera instability.

We collected three data sets for each problem. The first is

used for network training over the RGB channels informa-

tion only. The other two data sets are used for testing. Test

set A contains RGB images with 2D marked ground truth.

Test set B consists of RGB-D images with corresponding

3D ground truth measurements collected manually using a

ruler. The accuracy of the 3D point detection (including de-

projection) and final 3D measurements is reported on test

set B. The accuracy of object detection and interest point

identification stages is reported on the union of A and B.

The average deviation for tree height estimations is 9.24
centimeters, less than 5% of the true height. For the more

challenging leaf aspect ratio task, our average deviations are

2.01 and 0.96 for leaf length and width, respectively, which

are less then 10% of the true measurements.

The main contributions of this work are threefold. First,

we present a general method for measuring plant part

lengths under challenging conditions for agricultural pheno-

typing. Second, we demonstrate the success of the method

on two real world tasks of banana tree height estimation

and banana leaf measurements. Third, we provide detailed

analysis of the deviations and errors in the various stages of

the algorithmic pipeline, supplying important cues regard-

ing further improvement opportunities.

2. Related Work

Plant Phenotyping using Imaging Techniques: Tradi-

tional phenotyping is based on extensive human labor,

where only a few samples are collected for thorough visual

or destructive inspection. These methods are time consum-



Figure 2. High level view of our processing pipeline. Left: the

backbone network, extracting a reach feature map in 5 different

octaves using the FPN. Middle: Extracted representations of 256

RoIs are processed by classification and box refinement branches

(1) and the interest point finder (2), whose structure is detailed. kp

denotes the object’s number of keypoints. Right: 2D locations of

the interest points are extracted from the output heatmap of (2).

They are deprojected into world coordinates, and distances among

them provide the length measurements (3).

ing, subjective and prone to human error, leading to what

has been termed as ’the phenotypic bottleneck’[6]. Com-

puter vision in agriculture has been studied intensively for a

few decades, with a primary goal of enabling large scale, au-

tomatic visual phenotyping of many phenotyping tasks. Li

et al. [18] provided in their work extensive survey of imag-

ing methodologies and their applications in plant phenotyp-

ing. Since recently deep learning techniques have emerged

as the primary tool in computer vision, they have a growing

impact on agricultural applications [17].

RGB-D sensors in phenotyping tasks: In recent years,

the use of RGB-D sensors has been expanding due to their

increasing reliability and decreasing costs. Well registered

depth and color data from such sensors provide a colored

3D point cloud [9] structure, which is useful in many appli-

cations. For example, Chéné et al. [4] showed that depth

information can resolve individual leaves, allowing auto-

mated measurement of leaf orientation in indoor environ-

ments. Vit et al. [28] recently compared several depth

sensors for a plant phenotyping task, in field condition and

in various illumination conditions. It was shown that Intel

D435 outperforms the other competitors. In [30] the size of

mango fruits in field conditions was estimated. Jiang et al.

[15] presented an algorithm for accurately quantifying cot-

ton canopy size in field conditions. They showed that the

multi-dimensional traits and multivariate traits were better

yield predictors than traditional univariate traits, confirming

the advantage of using 3D imaging modalities. Miella et al

[20] proposed an in-field high throughput grapevine phe-

notyping platform for canopy volume estimation and grape

bunch detection, using a RealSense R200 depth camera.

Measuring plant height and leaf size: In [22] the

area, perimeter, length, and thickness of bananas were mea-

sured using a combination of computer vision techniques

on gray-scale images. In [3, 16] algorithms for estimation

of sorghum height were suggested. Estimation was done in

field conditions from autonomously captured stereo images.

The methods are based on classic techniques, with Hough

transform used for detection and tracking applied to obtain

robust measurements. An et al. [1] presented a technique

for measuring rosette leaf length by detecting the leaf cen-

ter and tips in a leaf-segmented binary image. The center

was estimated as the centroid of all white (leaf) pixels. Leaf

tips were detected as peaks of the rosette-outline curvature.

They didn’t use depth information in their method.

keypoints detection: Keypoints detection is used exten-

sively in human pose estimation and face recognition. In

[10] human joints keypoints are detected by predicting a

one-hot spatial mask for each key point type. In [23] an-

other architecture for human joint detection is suggested,

based on progressive pooling followed by progressive up-

sampling. In [25] a CNN is used for localizing face land-

marks. Similar to our work, landmark detection is preceded

by face detection. In contrast for our work, their proposed

architecture explicitly infer the visibility of key points, to

account for points invisible at test time. Since our goal is

to perform 3D measurements, we have no interest in invis-

ible key points, which do not enable such measurements.

Instead, we define as ’measurable object’ only objects in

which all the relevant key points are visible, and train our

detector to only detect measurable object instances.

keypoints detection have not been extensively used in

plant phenotyping [27]. Hu et al. [11] developed an al-

gorithm for measuring three size indicators of banana fruit,

namely length, ventral straight length, and arc height with-

out using 3D information. They locate five points at the

edge of banana and calculated euclidean distances between

point pairs for determining these indicators. [13] solves

a leaf counting task with an intermediate stage of interest

point finding. A model for finding leaf centers is trained

with keypoints treated as Gaussian heat map similarly to our

work. The heatmap is then used for leaf count regression.

3. Architecture and Algorithms

3.1. Mask R­CNN

The first two stages in our proposed pipeline are based on

the Mask R-CNN architecture [10], with some adaptations

made for our goal. Mask R-CNN extended a previous archi-

tecture termed Faster R-CNN [26] by adding network mod-

ules for object segmentation or alternatively, interest point

detection. As in Faster R-CNN, Mask R-CNN also consist

of two stages. The first stage is the RPN, which generates a

set of rectangular object candidates, each accompanied by

an ’objectness’ score stating the confidence in object ex-

istence. The object candidates are chosen from an initial



large set of candidates termed ’anchors’. The anchors set

is based on a grid of image locations, and for each location

nine anchors are considered with three different sizes and

three aspect ratios.

The RPN is deep fully convolutional network whose in-

put is a set of feature maps extracted from a backbone

network. The backbone we use is ResNet-101, followed

by a Feature Pyramid Network (FPN) [19]. FPN creates

multiple-resolution replicas of the high level feature maps

computed by the backbone. It hence enables detection at

multiple octaves, i.e. scales differing by a factor of two.

Among all anchors in all octaves, 256 top object candidate

rectangles are chosen for further processing. During train-

ing these are labeled as positive if they contain a measure-

bale object, and negative otherwise. A ratio of 0.33:0.66 is

kept for positive versus negative examples during training.

In the second stage, which is a separate network (i.e. no

gradient flows between the stages), the model spatially sam-

ples 7 × 7 × 256 tensors from each candidate region sug-

gested by the RPN. These region representations are pro-

cessed by three distinct branches for classification, bound-

ing box refinement and point of interest finding. In the clas-

sification branch a softmax layer is used to predict the class

of the proposed region, and in the refinement layer offset

values are regressed for refining the object’s bounding box.

Following [10], the point of interest branch consists of

eight 3 × 3 convolutional layers with 512 maps each, fol-

lowed by a deconvolution layers scaling up the representa-

tion to an output resolution of 56 × 56. In [10] a single

location in the output was designated as the true location,

and a spatial softmax classification loss was used to enforce

it during training. However, this configuration could not

cope with the difficulty of our tasks, and we have adjusted

it as described next.

3.2. Adjustments to the phenotyping problem

Unlike in standard detection, in our detection stage we

wish to discriminate and detect only measurable objects, i.e.

objects with all the relevant interest points visible. Specifi-

cally, candidates suggested by the RPN are considered pos-

itive during training iff they contain a measurable object in-

cluding all its key points. This creates a difficult detection

problem, since non-measurebale object candidates, which

are often very similar to measurable ones, have to be re-

jected by the object classifier and function as very hard neg-

atives. Furthermore, the measurability constrain adds dif-

ficulty since it decreases the number of positively labeled

anchors. To allow for a sufficient number of positive an-

chors we set the non maximum suppression threshold, used

for pruning overlapping candidates, to 0.85 during train-

ing. Hence, region candidates are only suppressed if they

intersect with a higher scoring candidate with a intersection-

over-union score larger than 0.85 (0.5 in [10]), so that more

positive candidates survive. We also filter the anchoring

system based on object size and aspect ratio, e.g. in tree

height estimation we do not use small or wide anchors.

The keypoints detection sub-network in [10], described

above, was used for a human pose estimation task, which is

less ambiguous than our tasks, and hence easier. The loca-

tions of human key points like knee, elbow, neck or eye, are

spatially well defined, and have unique appearance disam-

biguating them. In opposed to that, key points in the agri-

culture tasks considered here are not always clearly defined

spatially. For example, the basal point of a tree is defines as

the contact point of the tree stem and the ground. However,

the contact structure is not a point but a line. We define

the point as the middle of the line in our annotation, but

this point does not have a unique appearance discriminat-

ing it locally from other near points on the contact line. The

problem is further complicated since the contact line is often

hidden by low vegetation and dead leaves. The exact point

position is hence somewhat arbitrary, with nearby points

providing identically good candidates. A similar problem

exists for the ’left’ and ’right’ leaf interest points.

The increased key point ambiguity does not allow for a

strict single-pixel ground truth location, and enforcing it us-

ing the spatial softmax loss of [10] leads to learning failures.

Hence instead of using one-hot binary masks, we generate

for each annotated keypoint a Gaussian ground truth heat

map. In addition, we replace the spatial classification loss

with a simple L2 regression loss, i.e. minimize the square

distance, across all pixels, between the Gaussian heat map

and the output of the interest point branch.

For the tree height task we used in the ground truth heat

map isotropic Gaussians centered on the annotated point lo-

cation, with fixed variance of σ = 2 in each axis. For the

leaf side points we used a non-isotropic covariance to re-

flect the fact that these points are well defined in one direc-

tion (the direction perpendicular to the leaf center line), but

highly ambiguous in the other (see figure 1). Specifically,

let w = (w[1], w[2]) = x1−x2

||x1−x2||
be the leaf center line di-

rection, with x1, x2 the locations of the apex and basal key-

points respectively. We would like this direction to be the

large principal direction of the introduced covariance, i.e.

its first eigenvector. Given this direction and a hyper pa-

rameter S stating the requested ratio between the variance

in first and second principal vectors, the covariance matrix

is given by Σ = AtA with

A =

[

w[1]S −w[2]
w[2]S w[1]

]

Figure 3.Middle presents examples of the heat maps

generated in the two tasks. At inference time, we take the

(x, y) positions of the maximal value in the predicted heat

map as the 2D detection for further processing.



Figure 3. Visualization of the pipeline operation. The first row shows progress of banana tree height estimation on a typical example, and

the second row shows a case of banana leaves measurement. Left: Ground truth bounding boxes and keypoints annotations. Middle-left:

Ground truth Gausian heat maps constructed for interest point detection. for the leaf measurement example, the maps of the starred leaf are

shown. Middle-right: Heatmaps inferred by the network. Left: Object detections and interest point location as inferred by the network.

Figure 4. Ground truth collection. Left: Measuring the banana

tree and banana leaves with a ruler. Middle: Annotated ground

truth bounding box and keypoints of leaves. Right: Ground truth

Gaussian heatmaps derived for the interest points of the upper-

right leaf.

3.3. Obtaining 3D Measurements

In the last stage of the pipeline detected keypoint are

back-projected from 2D into 3D world coordinate, and then

distances between them are computed. Given the distance

D of a point from the sensor imaging plane, measured at

2D coordinates (x, y), one can compute the 3D coordinates

(X,Y, Z) by [7]:

X =
D · (cx − x)

fx
, Y =

D · (cy − y)

fy
, Z = D (1)

where (cx, cy) is the sensor’s principal point and fx, fy
are the focal lengths expressed in pixel units. While ideally

back projection is simple, in practice there are problems re-

lated to lack of depth measurements in some pixels (obtain-

ing hence the value 0), and to depth measurement noise. We

hence designed robust depth estimation procedures.

For the banana tree problem, we compute D with the

following three stage procedure: 1) Collect the depth val-

ues in the ball centered around the detected key point, with

5 pixels radius. 2) drop all the zero (depth failure) mea-

surements, and 3) compute the average of the lowest 10%
values. Specifically the last step makes the measurement ro-

Task Train 2D test 3D test

Tree height 577 (757) 87 (105) 33 (33)

Leaf measurements 454 (4409) 74 (236) 30 (101)

Table 1. Number of images and objects (in parentheses) used for

training, 2D and 3D testing.

bust with respect to neighborhood pixels which do not lay

on the object, but on far background instead.

For the leaves problem we use a different method. The

reason is that the 4 keypoints are located on the margin of

the leaf, hence large portion of their neighboring pixels have

background depth values. In addition, sometimes the tip

of the leaf is not well captured in the depth channel, leav-

ing only background depth measurements in the immedi-

ate vicinity of the point. Hence, we use the following two

stage procedure. First, we remove background pixels. This

is done by computing the minimum depth value in the im-

age Mn, the maximum value Mx and setting to zero all the

depth values above (Mn+Mx)/2. Then, for each key point

we only check the depth values of pixels on the line in the

direction of the opposite point (i.e. apex to basal, and left to

right). Let x1, x2 be the point and its opposite, and define

the unit vector between them w = x2−x1

||x2−x1||
. We then check

the depth values of positions x1 + l · w, for the 5 values

l = 0, 1, ..., 4, using nearest neighbor interpolation to han-

dle float pixel index values. The minimal among the non-

zero values is declared as the depth D, and if all are zeros

we continue to compute the depth in x1+l ·w for increasing

l values until the first non-zero value is encountered. Fol-

lowing back projection, we use standard Euclidean distance

computations to compute the required measurements.

4. Empirical Study

We report here experiments conducted on data collected

by experts at an Agritech company Rahan Meristem.



Figure 5. : confusion between right and left leaf points. Left:.

Cropped image of banana leaf with right keypoint annotated. Mid-

dle: The ground truth Gaussian heat map for the right keypoint.

Right: The predicted Gaussian heat map. Confusion between the

two points is not surprising, as they have the same local visual

characteristics. Only using a large spatial context, containing the

whole leaf, it is possible to distinguish between them (according

to the locations of the apex and basal points).

4.1. Dataset and Annotation

For both problems, images were captured using two

types of sensors. RGB images for training were taken with

a Canon HD camera with 4032× 3024 resolution. Aligned

RGB-D images with resolution 1280 × 720 were taken us-

ing the Intel D435 sensor. For Banana trees, images were

taken in several plantations, located in the same area, of ba-

nana trees at the fruit harvest stage. The plantations differ

w.r.t the banana varieties, which include Gal, Grand-Naine,

Adi and Valerie. For the banana leafs, all images were taken

in greenhouses conditions. The potted plants were approx-

imately three months old, a stage which enables to deter-

mine if the plant has a mutation based on its leaves aspect

ratio. Train and test set sizes are summarized in Table 1. For

evaluation we used two types of test sets. The first consists

of RGB images not used in the training process, including

RGB channels of the images taken with the D435 camera.

This test set was used for 2D evaluations of our methods.

The second test set is a subset of the first one, including

images taken by Intel D435 for which we collected manual

ground truth lengths of the objects - banana tree height and

banana leaf length and width measured by a ruler. This test

set is used for 3D evaluations.

RGB images were annotated with bounding boxes and

interest points locations. A total of 757 banana trees, and

1468 banana pots (4409 leaves) were annotated. All anno-

tated objects were measurable, i.e., all their keypoints were

visible. Based on the 2D keypoints annotations, Gaussian

ground truth heat maps were constructed, as showed in Fig-

ure 4. For 3D evaluations, the height of 33 banana trees

and the length and width of 101 banana leaves in 30 pots

were manually measured. Figure 4 (Left) shows the rulers

and the measuring procedure.

4.2. 2D Metrics and Results

Detection Rates: The detection threshold was set to 0.5
for both problems as a default compromise between the

two types of error. Given a specific application one may

Pixel error Relative error

keypoint µ σ SE µ σ SE

tree upper 91.37 155.9 16.17 0.03 0.04 0.004

tree basal 121.98 82.27 8.53 0.04 0.02 0.001

leaf apex 34.89 30.27 2.036 0.05 0.03 0.002

leaf basal 32.85 30.52 2.05 0.05 0.03 0.002

leaf left 36.67 42.79 2.87 0.06 0.05 0.003

leaf right 41.16 42.9 2.88 0.06 0.05 0.003

Table 2. Keypoint localization error on the first test set – Euclidean

distance between ground truth and detected keypoints. SE denotes

standard error.

chose higher thresholds to achieve higher confidence in the

reported estimations, or lower thresholds to be able to de-

tect additional objects, at the cost of more false positives.

For the banana tree problem, the mean average precision

(mAP) was 0.865. The detector successfully identified 95
of 105 trees, with only two false positives. In each of the de-

tected trees, the model was able to find the two keypoints.

The AP for banana leaves detection was 0.885, successfully

identifying 221 leaves of 236, with 36 false positive. All in-

terest points of type basal, apex, and left were detected, but

key points of the right keypoint were not found in two de-

tected leaves. Observing the predicted heat map (Figure 5),

it can be seen that in this case, the key points finder strug-

gled to distinguish between the left and the right keypoints.

To overcome this difficulty, we search for the most likely

location only in the half space relevant to the keypoint, as

determined by the apex and basal point positions.

Point localization accuracy: We compute the Euclidean

distance between the detected 2D point location and the

ground truth location (deviations in pixels). Since this mea-

sure depends on image resolution, its units are somewhat

arbitrary. We hence report also the deviations normalized

by the length (in pixels) of the relevant distance measured

(leaf width, height or tree height). The results can be seen

in Table 2. As can be seen, the average point deviation is

between 2% and 6% of the length measured. Estimation

Deviations in the tree problem are lower than deviations in

the leaf problem. The largest deviations were measured for

the left and right leaf keypoints, which are clearly more dif-

ficult to detect, as they are positioned somewhat arbitrarily

along the leaf curve.

4.3. 3D Metrics and Results

For 3D evaluation we examine the absolute deviation of

the 3D measurements for our phenotyping tasks, i.e. tree

height, leaf length, leaf width (in centimeters) and leaf

length-width ratio (unit less). As we performed manual

physical measurements of the objects, we are able to evalu-

ate our methods with respect to the true 3D lengths.

Table 3 shows the estimation deviations of our complete

pipeline for each of the tasks. As can be seen, the mean rel-



Figure 6. Detection examples in the banana trees problem. Green denotes ground truth, red denotes successful detection, and blue denotes

false positives. Above each image we show the height measured by ruler (GT) and the estimated height by our model (DT)

Algorithmically detected keypoints Manually marked keypoints

Error in cm Relative error R2 Error in cm Relative error R2

size µ σ SE µ σ SE µ σ SE µ σ SE

tree height 9.24 7.7 1.36 0.03 0.03 0.004 0.74 10.55 6.45 1.14 0.03 0.03 0.003 0.71

leaf length 2.01 1.3 0.13 0.08 0.05 0.005 0.88 0.86 0.76 0.08 0.03 0.03 0.003 0.95

leaf width 0.96 0.73 0.07 0.07 0.06 0.007 0.89 0.94 1.11 0.12 0.07 0.09 0.009 0.77

leaf ratio 0.15 0.17 0.018 - - - - 0.15 0.16 0.017 - - - -

Table 3. Length estimation errors for manually marked and automatically detected keypoints on second test set. SE denotes standard error.

ative deviation for all tasks is under 8% of the true length.

The error is smallest for tree height, and largest for leaf

length. The reason is that for smaller objects, obtaining ac-

curate estimations is more difficult. This is compensated to

some degree, but not completely, by the smaller distance of

the leafs to the camera.

To further understand whether the deviations stem from

the keypoint detection algorithm, or rather from the inac-

curacy introduced by RGB-D sensor, we also estimate the

3D length based on the manually marked ground truth key-

points in the annotated images. In this measurement we

skip the first two phases of the pipeline and use only the

last de-projection phase (applied to the manually annotated

2D points) to compute the 3D lengths of interest. As Ta-

ble 3.right shows, for tree height and leaf width there is no

statistically significant difference between the algorithmi-

cally computed and manually stated points. For leaf length,

the error introduced by the automated detection is about

twice larger than the error from the manual markings. Since

there is no such difference between points related to leaf

width and height in 2D accuracy (table 2), the larger devi-

ation is clearly related to larger difficulty of 3D estimation

for the leaf apex and/or basal points.

In order to estimate the statistical strength of our method,

we compute the fraction of explained variance R2

R2 = 1−
V arerr
V artotal

= 1−

∑N

i=1
(yi − ŷi)

2

∑N

i=1
(yi − ȳ)2

(2)

This essentially compares our estimation method to the

trivial estimation method of predicting the mean length for

every instance. The results are summarized in the R2 col-

umn in table 3. It can be seen that our estimation explains

(i.e. successfully infers) a significant portion (0.74 − 0.89)

of the length variance. Interestingly, for leaf width the al-

gorithmic pipeline provides better estimations than relaying

on manually marked key-points. The reason is probably the

ill-defined nature of the ’left’ and ’right’ points used for this

estimation, which are more consistently found by the algo-

rithm then by the human annotator.

4.4. Detection Examples and Error Analysis

Figures 6 and 7 present successful detection examples

alongside various errors of our full pipeline for banana trees

and banana leaves problems, respectively. In the detection

examples of the trees (Figure 6), the left example shows a

case of highly accurate detection and estimation. In the sec-

ond image an example of false positive detection is shown.

It happened because the model associated the peduncle of

the ground truth tree to another tree, and since the basal of

the other tree is visible the model considers it as a mea-

surable object. In this image, the basal point detected has

a significant deviation from the marked ground truth, but

since it also lies on the line connecting the stem to ground,

tree height estimation is not affected. In the third image 2D

deviations in the y axis in both keypoints lead to large devi-

ation in the height estimation. In the right image 2D errors

in keypoints position are rather small, but nevertheless the

height estimation deviation is relatively large. In addition



Figure 7. Detection examples in banana leaves problem. The ground truth objects are marked green, and red marks the detected objects.

Above each image there are the length and width manually measured using a ruler (GT), and the estimated length and width by our model

(DT), for the leaf marked by a yellow star.

Figure 8. Detected cucumber and its extremities in green house. In

green is the ground truth annotations, in red is our model detection

we can see an example of sub-optimal annotation: the an-

notated basal is marked lower than its correct position.

Figure 7 presents examples for banana leaves. Above

each image we show the ground truth and estimated length

and width only for the leaf marked with a yellow star, and

this is the leaf we refer to in our discussion. In the left

image keypoint detections and length measurement are ac-

curate for the marked leaf. In addition there is one relatively

small leaf that was not detected. One can argue about the

correctness of labeling this leaf as measurable, as it is al-

most vertical with respect to the sensor. There is also a

false positive detection of a leaf above the marked leaf, with

a basal hidden by the basal of the marked leaf, and hence,

its length cannot be measured. In the second and third im-

ages accurate 2D keypoint localization is obtained, but the

length estimation error is relatively high. The width error

is low for both images. We conjecture that the problem in

these images is related to errors in depth estimation by the

sensor for the basal or the leaf apex keypoints. The right

image seems to suffer from a similar problem, but with the

leaf width measurement.

5. Conclusion and Future work

We presented a general technique for length-based plant

phenotyping, based on keypoint detection in 2D and depth

information from a low-cost 3D sensor. The technique was

tested on two specific tasks: banana height estimation and

leaf length, width and aspect ratio measurements. It ob-

tained average deviation of 3% (of the total length) for tree

height estimation, and 7 − 8% deviation or for leaf width

and length estimation. Statistically, the method was able

to explain (infer) 0.74 − 0.89 of the total length variance.

It is not clear yet whether the results obtained for the as-

pect ratio estimation are good enough for identifying mu-

tant plants, as current measurements were done on normal

banana plants. A set of annotated mutant plant images is

required for further testing, and we currently work to obtain

such normal/mutant labeling of plants from an expert.

There are a number of possible avenues to take this work

forward. First, more data can be used in the problems we

considered here both in training, for improving keypoint lo-

calization accuracy, and in testing, for verifying our find-

ings. While lengths are currently computed using plain Eu-

clidean distance, we may consider Geodesic distances in the

future, taking into account the curvature of the measured

surfaces. To demonstrate the generality of the method be-

yond the two tested problems, we are currently pursuing

additional tasks like measuring cucumber length by detect-

ing its extremities. Figure 8 presents an example of our

initial results for finding cucumber’s extremities in green-

house conditions. Beyond length measurements, it would

be of high interest to develop algorithms extending to mea-

surements of areas and volume based phenotypes. Looking

forward, our method can be embedded in a flexible, general

phenotyping system as a length estimation module.
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